
a2RetroSystems presents

Ethernet card for the Apple II series

User’s and Programmer’s Manual

©2018 a2RetroSystems
Uthernet II is a trademark of a2RetroSystems.

Disclaimer of all Liability

This card was designed and built for “hobby” computing purposes only. It is strictly forbidden to use it
to launch spy satellites, track ICBM missiles or air traffic control paper airplanes. Having said that,
you can use it for whatever you want so long as you don’t bug me about it. It’s your problem not mine.

Warranty and Return Information

You may return the Uthernet II card for any reason within 90 days of receiving it. This should allow
you enough time to evaluate its compatibility with your system. I guarantee your Uthernet II card to
be free of defects under normal use for a period of one year from the date you receive the product.
This means that if the card fails, and you have treated it properly, I will repair, replace, or refund your
money at my discretion, to be determined by me on a case by case basis.

If you want to return the product under warranty, please contact me via e-mail to discuss return ar-
rangements. Include your name and the serial number on the front of the card. It is your responsibility
to get the product you are returning back to my door. I will not be responsible for lost shipments.
Please choose shipping methods and insurance as you deem necessary.

Web site: http://www.a2retrosystems.com

Email: info@a2retrosystems.com

Manual and Uthernet II logo by D. Finnigan.
17 Nov 18

http://www.a2retrosystems.com
http://www.a2retrosystems.com
mailto:info@a2retrosystems.com?subject=
mailto:info@a2retrosystems.com?subject=

Contents

1. Presenting the Uthernet II

2. Installation and Setup

3. Supported Software

4. Programming the Uthernet II

5. Troubleshooting

6. Schematic

7. Credits

Presenting the Uthernet II

Congratulations on purchasing the best Ethernet card for the Apple II series! The Uthernet II
by a2RetroSystems was the result of over a year of research, testing and development to bring
you the best possible network interface card for the Apple. With Uthernet II, your Apple IIGS
or enhanced Apple IIe can connect to a home network, or even the Internet to surf the Web,
send and receive email, transfer files with FTP, chat with IRC, and so much more.
 If you are upgrading from the original Uthernet card, you will be pleased to find that
the Uthernet II offers compatibility with nearly all of your existing software, while providing
exciting new features that will enable faster communication and more powerful programs. In
most cases, only an upgraded driver for the Uthernet II is needed.
 Programmers, be sure to study Chapter 4, as you will be thrilled by what the Uther-
net II offers over the old Uthernet in terms of programming capabilities.

1

Installation and Setup

The Uthernet II can be installed in any model of Apple II with slots, though enhanced Apple
IIe and Apple IIGS are recommended. Uthernet II may not be fully compatible with older
models, the integer Apple II and Apple II Plus. The Uthernet II does not have any on-board
firmware so it may be installed in any standard slot.

Installing the Uthernet II

To install the Uthernet II card, begin by following the standard safety precautions: power
down your Apple and discharge any static electricity build-up.
 Remove the cover of your Apple, and gently insert the card so that the large gray Eth-
ernet port is facing the front (or keyboard) of the Apple. This detail is essential: the small
chips and LEDs must be facing away from the Apple power supply. When pressing the Uth-
ernet II into the slot, press only on the circuit board, not the gray Ethernet port.
 Next, carefully remove one of the back panel covers (if necessary) and thread the Eth-
ernet cable through it. Be careful removing these plastic covers as they are usually brittle from
age. If you needed to remove a cover, it is convenient to tape it to the power supply or some-
where else inside the case so that you do not lose it. The Uthernet II is a 10/100BaseTX de-
vice, meaning that a standard Cat-5 or Cat-6 cable is sufficient. Once the cable is inside the
Apple’s case, loop it around back and insert it into the Ethernet port on the Uthernet II. If you
did not need to loop the cable back, then you probably installed the Uthernet II facing the
wrong way. Make sure that the Ethernet port is facing the front of the Apple.

Figure 2.1 - Correct installation of the Uthernet II

2

The other end of the Ethernet cable should be attached to a switch, hub, router, or another
computer.
 If you are installing the Uthernet II in an Apple IIGS in a slot other than 3 or 4, be sure
to open the Control Panel and set the Uthernet II’s slot number to Your Card.

Installing the Optional Panel Mount Cable

Due to the inconvenience of having to open the Apple’s case to adjust the Ethernet cable, it
may be a good idea to install a short Ethernet extension cable that runs from the Uthernet II
to the back panel of the Apple. Adafruit sells a Panel Mount Ethernet Extension Cable
(Product ID 909) that fits the small cutouts on the back panel of the Apple IIe for $4.95. This
is an optional accessory that you may order separately at any time from Adafruit. If you install
this, you will not have to open the Apple’s case in order to connect or disconnect the Ethernet
cable. The drawback to installing the Panel Mount Cable is that it will block an Apple II slot,
either 2 or 4.

Figure 2.2 - The Panel Mount Cable

To install the panel mount cable you will need a small Phillips screwdriver. Begin by turning
your Apple IIe around so that you are looking at the back panel with its numbered cutouts.
Choose which small cutout you wish to use: either 5, 6, 8, or 9. Carefully remove the plastic
cover, if necessary, and tape it to the power supply or put it in some safe place so you do not
lose it. On the end of the Panel Mount Cable, use the screwdriver to loosen one of the screws,
and completely remove the other screw.
 Insert the male end of the cable into the gray Ethernet port on the Uthernet II. Butt
the opposite end of the cable against the cutout that you chose, making sure that the loosened
screw head is showing on the outside of the back panel. Install the second screw, and tighten
both so that they are snug. Do not over tighten the screws! Your completed installation
should look like that shown in Figures 2.3 and 2.4.

Installation and Setup

3

https://www.adafruit.com/
https://www.adafruit.com/

Figure 2.3 - Interior view of Panel Mount Cable

Figure 2.4 - Back panel view of Panel Mount Cable

Installation and Setup

4

Testing the Uthernet II

Your Uthernet II card was thoroughly tested before it was shipped to you, but it is a good
idea to test it now to confirm that it is working correctly in your system. Power on your Apple
II and enter the Monitor by pressing Control-Reset and typing CALL-151 at the prompt.
 In the following instructions, what you will type will vary slightly depending on which
slot the Uthernet II is installed in. Replace the X with the appropriate number or letter from
the following table:

If the Uthernet II is installed
in slot...

... replace the X with the
following:

0 8

1 9

2 A

3 B

4 C

5 D

6 E

7 F

At the Monitor prompt (*), enter the following three lines, being sure to replace the X with
the correct letter or number from the table above. Do not type the asterisk, but do press Re-
turn after each line:

*C0X4: 80

*C0X4: 03

*C0X4

After you press Return, the Apple should print the following line:

C0X4- 03

The X should be the same letter or number that you were using. If you do not see the value 03
printed on the screen, then verify that you are using the correct letter or number that corre-
sponds to the slot number in which you have installed the Uthernet II. Otherwise, there may
be a problem with your Uthernet II. Refer to the Troubleshooting chapter of this manual.

Installation and Setup

5

Testing the Link

Once the card is installed and connected to another device, leave the cover off your Apple and
power it on. At least two LEDs on the Uthernet II should be lit: a green LED indicating a
good link, and a blue LED above it indicating a full-duplex connection. A white LED on indi-
cates a 100 Mb/s link, off means 10 Mb/s. In most cases, all three LEDs will be lit. If the
green link LED is not lit, you need to determine whether the Ethernet cable is working,
whether it is plugged in on both ends, and whether the device on the other end is powered on
and active. Follow the steps in Chapter 5 for troubleshooting the connection.
 Occasionally you may see a yellow LED blink periodically. This the receive LED, and
it indicates that the Uthernet II is receiving information from the network.

Installation and Setup

6

Supported Software

Thanks to standardized programming interfaces used for Uthernet-enabled software on the
Apple IIGS and 8-bit Apple, most software that worked with the original Uthernet will also
work with the Uthernet II. Only a new driver for the Uthernet II is needed.

Be sure to check the a2RetroSystems web site for the latest version of all software and
drivers for the Uthernet II.

TCP/IP Stacks and Operating Systems

Because the original Uthernet had no built-in TCP/IP stack, several implementations were
developed for it. A brief overview and a list of features of each is available in this article: TCP/
IP stacks for the Apple II. Though the new Uthernet II does have a built-in TCP/IP stack, the
existing implementations were updated with device drivers or link layers for it. These are
listed in the following sections.

A2osX

A2osX by Rémy Gibert is a new multitasking operating system for the 8-bit Apple II that in-
cludes a TCP/IP networking component. It is written in 65C02 assembly language for the en-
hanced Apple IIe, Apple IIc, or Apple IIGS. As of this writing, it is being continually updated
and improved with new features and functionality.

ADTPro

ADTPro by David Schmidt is not a TCP/IP stack, but instead is one of the most popular ap-
plications for the Uthernet. ADTPro is the Apple Disk Transfer utility, allowing you to copy
disk images to and from the Apple. Also included is a virtual Ethernet drive that allows the
Apple II running ProDOS to easily access files across a network. The latest version of
ADTPro is v2.0.1 (as of this writing) and it includes a driver for the Uthernet II. Click here to
download ADTPro. The source code for ADTPro is available from Sourceforge.

Contiki

Contiki by Adam Dunkels, ported to the 8-bit Apple II family by Oliver Schmidt, is currently
at version 3.0 (as of this writing). Contiki is a suite of Internet-enabled applications written in
C that includes a web browser, HTTP server, Telnet server, wget, and an IRC client. Click
here to download Contiki and its source code.

7

https://macgui.com/kb/article/764
https://macgui.com/kb/article/764
https://macgui.com/kb/article/764
https://macgui.com/kb/article/764
https://github.com/burniouf/A2osX/
https://github.com/burniouf/A2osX/
http://adtpro.com/
http://adtpro.com/
http://adtpro.sourceforge.net/download.html
http://adtpro.sourceforge.net/download.html
http://www.contiki-os.org/
http://www.contiki-os.org/
https://github.com/olverschmidt/contiki
https://github.com/olverschmidt/contiki
https://github.com/olverschmidt/contiki
https://github.com/olverschmidt/contiki

IP65

IP65 is a TCP/IP stack for the 8-bit Apple II series written in 6502 assembly language and C
by Per Olofsson, Jonno Downes, and Oliver Schmidt. It is continually being updated, with
source code available here. There is a suite of ready-to-use applications including a telnet cli-
ent, web server, and HTTP downloader (wget). ADTPro, mentioned earlier, also uses IP65.

Marina

Marina by D. Finnigan is another TCP/IP stack for the 8-bit Apple II series that is also writ-
ten in 6502 assembly language. The source code for Marina is available on the Marina web
site.

Marinetti

Marinetti, originally written by Richard Bennett, is a TCP/IP stack available only for the Ap-
ple IIGS. If you do not have Marinetti installed, you will need to download and configure it.
Visit the a2RetroSystems Marinetti page to download the latest version, 3.0b9, as of this writ-
ing. Installation instructions for Marinetti, as well as the needed Uthernet II link layer, are
provided with the download package.
 Ewen Wannop developed the Uthernet II link layer needed for Marinetti, which is
available from his web site. If you already have Marinetti installed on your IIGS this is the
only file that you need.
 After you download the Uthernet II link layer file and copy it to your IIGS disk, use
ShrinkIt GS to decode and extract it. The resulting file, named UthernetII, should be copied
to the :System:TCPIP: folder of your startup disk. Be sure to restart your IIGS after copying.
If this TCPIP folder does not exist, then you probably need to install Marinetti.
 Marinetti has the widest selection of applications available for it, including web brows-
ers, HTTP servers, FTP clients, an email client, ping, whois, finger, an IRC client, and NTP
clients. A partial list of applications is available on the a2RetroSystems Marinetti page. Source
code for Marinetti is available from Sourceforge.

PLASMA

PLASMA, by David Schmenk, is a combination of virtual machine and assembler/compiler
matched closely to the 6502 architecture. It is a new programming language for the entire Ap-
ple series that allows a program to run without any changes on the Apple I, Apple II, and Ap-
ple III, similar to the Java VM system. PLASMA includes support for the Uthernet II and a
demonstration web server. Download the source code and demos from GitHub,

Supported Software

8

https://github.com/cc65/ip65
https://github.com/cc65/ip65
https://github.com/cc65/ip65
https://github.com/cc65/ip65
http://marina.a2hq.com/
http://marina.a2hq.com/
http://a2retrosystems.com/downloads/Marinetti3.0b9.po
http://a2retrosystems.com/downloads/Marinetti3.0b9.po
http://www.speccie.co.uk/speccie/software/uthernet2ll.bxy
http://www.speccie.co.uk/speccie/software/uthernet2ll.bxy
http://a2retrosystems.com/Marinetti.htm
http://a2retrosystems.com/Marinetti.htm
http://marinetti.sf.net/
http://marinetti.sf.net/
https://github.com/dschmenk/PLASMA
https://github.com/dschmenk/PLASMA

Programming the Uthernet II

The Uthernet II is built around the Wiznet W5100 Ethernet controller. The W5100 supports
10/100Mb/s Ethernet and includes a built-in TCP/IP stack and 16KB internal buffer for data
transmission. The W5100 has the following features:

• Support for TCP, UDP, ICMP, IPv4, ARP, IGMP, and PPPoE
• 10BaseT/100BaseTX Ethernet, PHY embedded
• Auto Negotiation (Full-duplex and half duplex)
• Auto MDI/MDIX
• 4 independent sockets
• Internal 16KB Memory for TX/RX buffers
• Interrupts (IRQ)

While the W5100 includes built-in support for TCP/IP protocols, it can also be operated in
MAC Raw mode, which allows the programmer to use it as a traditional Ethernet controller
and send any kind of information using any protocol over the network. The MTU of the
W5100 has a fixed upper limit of 1500 bytes, not including the 14-byte Ethernet header.
 A document that you will need to frequently refer to is the W5100 Datasheet which
includes additional programming information. See also the Uthernet II Developer’s Wiki.

W5100 Memory Map

The W5100 has its own internal address space that is completely independent from the Ap-
ple’s memory. Communication between these two spaces is performed through a set of Apple
slot I/O addresses that are described in the next section. The W5100 has a 16-bit address
space that contains 32,768 locations. The space is divided into areas for common settings,
socket settings, transmit buffers, and receive buffers. Table 4.1 shows the general layout and
purpose of each range of memory.

Table 4.1 - W5100 Memory Map Overview

9

Address Range Purpose

$0-2F Common registers

$30-3FF Reserved

$400-7FF Socket registers

$800-3FFF Reserved

$4000-5FFF Transmit buffers (TX)

$6000-7FFF Receive buffers (RX)

https://www.wiznet.io/product-item/w5100/
https://www.wiznet.io/product-item/w5100/
https://github.com/a2retrosystems/uthernet2/wiki
https://github.com/a2retrosystems/uthernet2/wiki

Apple Slot I/O

All I/O to and from the W5100 is performed through a set of 4 addresses in the $C0x0 range.
The x is of course determined by what slot number the Uthernet II is installed in. All exam-
ples in this manual will assume slot 4. On the W5100, this method of access is called Indirect
Bus I/F mode. These addresses are all R/W enabled.

These 4 addresses are as follows:
• $C0x4 - Mode Register
• $C0x5 - Address High

• $C0x6 - Address Low
• $C0x7 - Data Port

Following is a brief overview of each of these addresses:
 The Mode Register is generally used only at program initialization time, as it soft re-
sets the W5100 and controls some low-level operational settings. Reading from this location
returns the current mode byte.
 There are two address registers that set an internal address pointer within the W5100’s
address space. The W5100 has a 16-bit address space, so there are two bytes for an address.
Reading these registers will return the current value of the address pointer. Using the Mode
Register, it is possible to configure the W5100 so that each successive read or write to the
Data Port (described next) will automatically increment the internal address pointer. After a
hardware reset the address pointer is initialized to 0.
 The Data Port is a single location that is used to pass data between the Apple and the
W5100. As stated above, it is possible to configure the W5100 so that each read or write to
this location automatically increments the address pointer afterward. Doing so will lead to
more efficient use of the W5100, as all transmit and receive operations must include a loop
over every byte to be sent or received.

Mode Register

The Mode Register is used to perform a software reset, as well as set Ping Block mode,
PPPoE mode, Address Auto-Increment, and Indirect Bus mode. Indirect Bus mode is the
only setting that absolutely must be enabled to use the W5100. However, Address Auto-
Increment is nearly always enabled too, as it dramatically improves performance and simpli-
fies programming.
 When a program first initializes the W5100, bit 7 should be set in order to perform an
internal software reset in the W5100. Note that a software reset does not reset the address
pointer to 0; it remains unchanged. Following reset, the program should then leave bit 7 clear
and set the desired configuration bits, generally setting bits 1 and 0 to enable Address Auto-
Increment and Indirect Bus mode. Table 4.2 shows the Mode Register and function of its bits.

Programming the Uthernet II

10

Table 4.2 - Mode Register bits

The following sample code will initialize the W5100 and set Address Auto-Increment and In-
direct Bus mode. The Uthernet II should be in slot 4, or else change the $C0C4 to the appro-
priate value ($C0B4 for slot 3, for example).

A9 80	 	 LDA #$80	 ; reset the W5100
8D C4 C0	 STA $C0C4	 ; store in mode register
A9 03	 	 LDA #$03	 ; set address auto-inc (bit 1) and indirect mode
8D C4 C0	 STA $C0C4	 ; store in mode register

Accessing W5100 Memory

There are two steps to access the memory space of the W5100. First one must enter the de-
sired address using the Address High and Address Low slot I/O locations. Write the high byte
first, then low byte. Second, read or write the desired byte using the Data Port location. If you
will be doing a sequential read or write on the W5100, then you only need to set the initial ad-
dress. Be aware that the W5100 uses big endian byte order, that is, the high byte is in the
lower address, and the low byte is in the higher address. This is the opposite of what the Ap-

Programming the Uthernet II

11

Bit Symbol Description

7 RST Software Reset
Set this bit to initialize the W5100. Automatically cleared after reset.

6 N/A Reserved

5 N/A Reserved

4 PB Ping Block mode
Set this bit to ignore all ping requests when using built-in TCP/IP.

3 PPPoE PPPoE Mode
Set this bit if using ADSL without a router.

2 N/A Not Used

1 AI Address Auto-Increment
Set this bit to automatically increment address pointer after data read/
write. It is recommended to use this setting.

0 IND Indirect Bus mode
This bit must always be set when using the Uthernet II.

ple II usually uses, where the high-byte comes second. There is one exception to this rule: if
you wish to change only the low-byte of the address pointer, there is no need to set the high-
byte first.
 The following program shows how to set the address pointer and write to the W5100
Data Port by assigning the MAC address 00:08:DC:01:02:03 to the W5100:

A9 00	 	 LDA	 #$00	 ; high-byte of MAC address location
A2 09	 	 LDX	 #$09	 ; low-byte
8D C5 C0	 STA	 $C0C5	 ; set high-byte of address pointer
8E C6 C0	 STX	 $C0C6	 ; data register now points at MAC address
8D C7 C0	 STA	 $C0C7	 ; store first byte of MAC address, then auto-inc
A9 08	 	 LDA	 #$08	 ; 2nd byte of MAC address
8D C7 C0	 STA	 $C0C7	 ; store in data port
A9 DC	 	 LDA	 #$DC
8D C7 C0	 STA	 $C0C7
A9 01	 	 LDA	 #$01
8D C7 C0	 STA	 $C0C7
A9 02	 	 LDA	 #$02
8D C7 C0	 STA	 $C0C7
A9 03	 	 LDA	 #$03
8D C7 C0	 STA	 $C0C7	 ; last byte of MAC address

Notice that the Address Auto-Increment feature is being used here: the initial location of the
MAC address, $09, is set once, then it is automatically incremented by the W5100 after each
STA instruction.
 The next example will read back the third and fourth bytes of the MAC address and
print them on the screen:

A9 00	 	 LDA	 #$00	 ; high-byte of 3rd byte of MAC address
A2 0B	 	 LDX	 #$0B	 ; low-byte
8D C5 C0	 STA	 $C0C5	 ; set high-byte of address pointer
8E C6 C0	 STX	 $C0C6	 ; set low-byte of address pointer
AD C7 C0	 LDA	 $C0C7	 ; read 3rd byte from data port
20 DA FD	 JSR	 $FDDA	 ; print on screen
AD C7 C0	 LDA	 $C0C7	 ; read 4th byte
20 DA FD	 JSR	 $FDDA	 ; print

After running this program you should find DC01 printed on the screen. If not, be sure that
your reset and initialized the W5100 using the instructions on the previous page.
 When using Address Auto-Increment, the W5100 address pointer will wrap in two
places. First, when the address reaches and surpasses $5FFF, the end of all Transmit buffers,
the address wraps back to $4000, the beginning of those buffers. The second place is at
$7FFF, the last byte of the Receive buffers. After this point, the address will wrap back to
$6000, the beginning of the Receive buffers.

Programming the Uthernet II

12

If the address pointer is manually set to $8000, it will continue to advance as usual to $8001,
$8002 and so on, but reads and writes to the Data Port will begin from $0. For example,
$801A corresponds to $001A, the the RX Memory Size Register. When the address pointer
surpasses $FFFF it will wrap back to $E000. It is not recommended to write any program
that manually sets the address pointer above $7FFF.

Some Common W5100 Locations

The programmer must refer to pages 19-36 of the W5100 Datasheet for a list and description
of all W5100 memory locations, including the sockets. Table 4.3 contains some of the most
common locations and their function.

Table 4.3 - Common W5100 Memory Locations

Configuring Host Address, Gateway, and Subnet Mask

The built-in TCP/IP stack does not manage host configuration, that is, allocation or assign-
ment of host addresses. There is no DHCP or BOOTP client or Link Local Addressing im-
plementation built-in to the W5100.
 If the programmer wishes to use any of the socket modes beyond MAC Raw, the
W5100 should be configured with a source IP address, Gateway (router) address, and Subnet
mask. Note that it is still possible to use UDP sockets with no addresses configured, as in the
case of a DHCP client attempting to obtain an IP address. In all cases, however, a MAC
(hardware) address must be configured too, as shown in an earlier section in this chapter.

Programming the Uthernet II

13

Function Address Length (in bytes)

Mode Register (MR) $0 1

Gateway Address $1 4

Subnet Mask $5 4

MAC Address $9 6

Source IP Address $F 4

Interrupt (IR) $15 1

Interrupt Mask (IMR) $16 1

Retry Count (RCR) $17 2

RX Memory Size (RMSR) $1A 1

TX Memory Size (TMSR) $1B 1

 Table 4.3 shows the locations of these necessary host configuration parameters. By de-
fault they are all zero. The method of setting them is the same as shown for the MAC address.

Configuring W5100 Sockets

No matter which W5100 mode the programmer wishes to use: raw, IP, UDP, or TCP, a socket
must be configured and established on the W5100. This section will introduce the basics of
sockets that apply to all the above types while the following sections will cover the specifics
for each type of socket.
 As mentioned earlier, the W5100 allows up to 4 sockets to be active at once. Each
socket has 3 main areas reserved for it in the W5100’s address space: socket registers, transmit
buffer, and receive buffer.
The socket registers contain basic information about the socket including its current mode,
command, status, source port, foreign port, foreign IP address, and pointers and lengths for
the transmit and receive buffers. Pages 15-18 of the W5100 Datasheet list all of the socket
registers and their corresponding addresses for each socket. Notice that the memory layout
for each socket’s registers is the same; only the starting address changes: $400 for socket 0,
$500 for socket 1, $600 for socket 2, and $700 for socket 3.
 The transmit and receive buffers are located in another area of W5100 memory. The
W5100 has a total of 16 KB of memory for these buffers. However, the maximum buffer size
for transmit and receive is 8 KB each, meaning that the combined transmit buffer size of all
sockets cannot be larger than 8 KB, nor can the combined receive buffer size of all sockets be
larger than 8 KB. It is the responsibility of the programmer to determine how to divide the 8
KB of transmit and receive space between the sockets. If only one socket will ever be used,
then the selection is simple: just assign 8 KB for transmit and 8 KB for receive. If using two
sockets, then one could assign each socket 4 KB of transmit and receive buffer space. It is not
required to assign the same amount of buffer space to each socket, nor must the transmit and
receive buffer sizes be the same for a socket.
 The buffer sizes are configured by storing a byte in the RX Memory Size and TX
Memory Size registers. As Table 4.3 shows, these registers are located at $1A and $1B, re-
spectively, in the W5100’s address space. The default value is a 2 KB transmit buffer and a 2
KB receive buffer assigned to each of the 4 sockets. The following example shows how to as-
sign 8 KB transmit and receive buffer to socket 0, meaning that only this socket can be used:

A9 00	 	 LDA #$00	 ; high-byte of RMSR location
A2 1A	 	 LDX #$1A	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at RMSR
A9 03	 	 LDA #$03	 ; assign 8 KB to socket 0 receive buffer
8D C7 C0	 STA $C0C7	 ; set RX buffer size
8D C7 C0	 STA $C0C7	 ; here we assume auto-inc to set TX buffer size

Programming the Uthernet II

14

Notice that the program assumes Auto-Increment mode is active. The second STA to $C0C7
sets the TX Memory Size register located at $1B. The following program assigns 4 KB of
transmit and receive buffer space to sockets 0 and 1:

A9 00	 	 LDA #$00	 ; high-byte of RMSR location
A2 1A	 	 LDX #$1A	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at RMSR
A9 0A	 	 LDA #$0A	 ; assign 4 KB to socket 0 and 1 receive buffer
8D C7 C0	 STA $C0C7	 ; set RX buffer size
8D C7 C0	 STA $C0C7	 ; here we assume auto-inc to set TX buffer size

For details on how to assign other amounts of buffer space to the sockets, refer to page 23 of
the W5100 Datasheet.

Managing Socket Buffers

Though the W5100’s built-in TCP/IP stack simplifies a great many details for the program-
mer, there are a few minor complexities involved with managing socket buffers. The first con-
cern is to compute the correct base address within the W5100’s memory space for the transmit
and receive buffers. Recall from Table 4.1 that the transmit buffers start at $4000 and the re-
ceive buffers at $6000. In the simplest example, a single socket that uses 8 KB of buffer space
for transmit and receive, the base addresses for those buffers are $4000 and $6000, respec-
tively. The formula to compute the receive buffer base address for a given socket is simple:
start with $6000 and add the receive buffer sizes of all preceding sockets. For example, let us
say that socket 0 has a receive buffer size of 4 KB, socket 1 has 2 KB, and sockets 2 and 3
have 1 KB each. The base address for the receive buffer of each socket is $6000 for socket 0,
$7000 for socket 1, $7800 for socket 2, and $7C00 for socket 3.
 The method of computing addresses of the transmit buffers is identical. Just ensure
that you start at $4000 for socket 0, and keep in mind that the transmit buffer size for a given
socket does not necessarily have to be equal to its receive buffer size.
 The second piece of information needed to manage socket buffers is the buffer mask.
The buffer mask ensures that a program does not try to read or write outside of the valid
buffer space for a socket. Fortunately, computing the mask is simple: take the buffer size and
subtract 1. For example, if a socket’s transmit buffer size is 4 KB ($1000) then its buffer mask
is $0FFF. An 8 KB buffer has a mask of $1FFF. A buffer mask must be computed for both the
socket’s transmit and receive buffers, but if they are the same size, then the buffer mask for
them is also the same. Otherwise the socket’s transmit buffer and receive buffer will each have
a different mask.

Programming the Uthernet II

15

The table below shows example buffer sizes, base addresses, and masks for 4 sockets, two of
which use a receive buffer that is a different size than the transmit buffer. Notice that for all
sockets except 1 and 2, the TX and RX sizes are the same, therefore the TX and RX masks
are the same. Socket 1 uses a 1 KB transmit buffer and a 2 KB receive buffer, while socket 2
uses a 2 KB transmit buffer but only a 1 KB receive buffer, so the masks differ. Though this
setup is admittedly quite contrived, it shows the flexibility in configuring buffers.

Configuring and Opening a Socket

Once the buffer sizes have been configured, the programmer may configure and open a socket
on the W5100. The first step is to determine which socket mode should be used. Next, write
the appropriate socket mode byte to the Socket Mode Register. Each socket has an independ-
ent Socket Mode Register that determines the socket type, whether to enable Multicasting,
and delayed ACK (if using a TCP socket). Only socket 0 can be configured with a MAC filter,
and then only when in MAC Raw mode. Table 4.4 shows the Socket Mode Register and the
function of each of its bits. The low 4 bits of the mode byte determine the socket type. Table
4.5 shows how to set the bits for each socket type.
 Socket 0 is special in that it is the only socket that can be used for MAC Raw and
PPPoE modes. Otherwise, it can be used like any other socket.
 The following example shows how to open socket 0 in MAC Raw mode with the MAC
filter enabled. Page 15 of the W5100 Datasheet shows that the address for the socket 0 Mode
Register is $400.

A9 04	 	 LDA #$04	 ; high-byte of s0 MR
A2 00	 	 LDX #$00	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 MR
A9 44	 	 LDA #$44	 ; MAC Raw mode with MAC filter on
8D C7 C0	 STA $C0C7	 ; set socket mode

Programming the Uthernet II

16

Socket TX size TX base TX mask RX size RX base RX mask

0 4 KB $4000 $0FFF 4 KB $6000 $0FFF

1 1 KB $5000 $03FF 2 KB $7000 $07FF

2 2 KB $5400 $07FF 1 KB $7800 $03FF

3 1 KB $5C00 $03FF 1 KB $7C00 $03FF

Table 4.4 - Socket Mode Register bits

Table 4.5 - Socket Type bits

Programming the Uthernet II

17

P3 P2 P1 P0 Socket Type

0 0 0 0 Closed

0 0 0 1 TCP

0 0 1 0 UDP

0 0 1 1 IP Raw

0 1 0 0 MAC Raw (Socket 0 only)

0 1 0 1 PPPoE (Socket 0 only)

Bit Symbol Description

7 MULTI Multicasting
Set this bit to enable multicasting. Only has effect with UDP sockets.

6 MF MAC Filter (for Socket 0 only)
Set this bit to filter out all packets not addressed as broadcast or to
the W5100’s MAC address. When clear, all packets are received. This
option, sometimes referred to as promiscuous mode, only applies to
socket 0 when used in MAC Raw mode.

5 ND/MC Delayed ACK/Multicast version
When a TCP socket is used, setting this bit will disable the delayed
ACK algorithm. When a socket is being used with Multicast, setting
this bit will use IGMP version 1; clearing the bit will use IGMP ver-
sion 2.

4 N/A Reserved

3 P3 Socket Type
Together these 4 bits determine the socket type (protocol).
Table 4.5 shows how to set the bits for each socket type.
Only socket 0 can be configured in MAC Raw or PPPoE modes.

2 P2

Socket Type
Together these 4 bits determine the socket type (protocol).
Table 4.5 shows how to set the bits for each socket type.
Only socket 0 can be configured in MAC Raw or PPPoE modes.1 P1

Socket Type
Together these 4 bits determine the socket type (protocol).
Table 4.5 shows how to set the bits for each socket type.
Only socket 0 can be configured in MAC Raw or PPPoE modes.

0 P0

Socket Type
Together these 4 bits determine the socket type (protocol).
Table 4.5 shows how to set the bits for each socket type.
Only socket 0 can be configured in MAC Raw or PPPoE modes.

This example shows how to configure socket 2 in UDP mode with Multicasting enabled and
IGMP version 1:

A9 06	 	 LDA #$06	 ; high-byte of s2 MR
A2 00	 	 LDX #$00	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s2 MR
A9 A2	 	 LDA #$A2	 ; UDP, Multicast on, IGMP v1
8D C7 C0	 STA $C0C7	 ; set socket mode

Once the socket type and settings have been written to the W5100, the socket must be opened
by using the OPEN command on the socket’s Command Register. Pages 26-27 in the W5100
Datasheet list all the valid command codes for sockets. The code for OPEN is $01.
 The following example shows how to open socket 0, assuming that the W5100’s ad-
dress pointer had been automatically incremented after setting the Socket Mode Register, as
shown in the previous examples, and now points at $0401, the socket 0 Command Register.

A9 01	 	 LDA #$01	 ; socket open command
8D C7 C0	 STA $C0C7	 ; send command, assuming W5100 address is $0401

Whether or not Auto-Increment Mode is being used, it may be a good idea to explicitly set the
W5100’s address pointer before issuing a command to the socket, especially if a socket needs
additional parameters to be set (such as a destination address or port) before it can be opened.
The following example uses this approach to open socket 2.

A9 06	 	 LDA #$06	 ; high-byte of s2 CR
A2 01	 	 LDX #$01	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s2 CR
A9 01	 	 LDA #$01	 ; socket open command
8D C7 C0	 STA $C0C7	 ; send command

It is important to note that the value of the Command Register returns to 0 after the W5100
has finished executing the command.

Checking Socket Status

Each socket has a Status Register that contains the socket’s type and state. If the socket is in
TCP mode, the programmer can determine from the Status Register what TCP state the
socket is currently in, such as ESTABLISHED or SYN SENT. The Status Register is located
at $403 for socket 0, $503 for socket 1, and so on. Pages 28-31 of the W5100 Datasheet list all
possible status values, and the location of the Status Register for each socket.
 After a socket is opened with the OPEN command, the programmer should check the
Status Register to make sure that the operation succeeded. The correct status value to check

Programming the Uthernet II

18

for is different depending on the socket type; see the following sections in this chapter on each
socket type for more information.

Common Socket Parameters

After the Command Status registers are several more registers used for common socket pa-
rameters such as local and foreign port, and foreign address, time to live (TTL) and DS/ECN
(former TOS byte). Some of these registers are only used for certain socket types. Table 4.6
shows these socket parameters.

Using TCP Sockets

TCP sockets are generally thought of as being either a client or a server. The client is connect-
ing to another TCP host, whereas the server is waiting for another TCP host to connect to it.
To open any TCP socket, the W5100 must have an IP address configured.
 A client socket must have a foreign address, foreign port, and local port configured be-
fore the socket is opened. See Table 4.6 for the locations of these three parameters. The next
step is to issue the CONNECT command ($04) to the socket’s Command Register. Finally,
the program must wait for the socket to become established with the TCP 3-way handshake.

Table 4.6 - Common Socket Parameters

Programming the Uthernet II

19

Function Address Length (in bytes)

Local Port
Only used in UDP and TCP modes

$x04 2

Destination MAC Address
Only used with SEND_MAC command in UDP mode

$x06 6

Foreign IP Address $x0C 4

Foreign Port $x10 2

Maximum Segment Size (MSS)
Only used in TCP mode. Default is 0

$x12 2

Protocol
Only used in IP mode. Sets IP protocol. Default is 0

$x14 1

DS/ECN (TOS)
Sets this field in IP header. Default is 0

$x15 1

Time to Live (TTL)
Sets this field in IP header. Default is 128

$x16 1

When the Status Register reads SOCK_ESTABLISHED ($17), the connection is complete
and the program may begin communicating with the remote host. If however the connection
should fail, the Status Register will return SOCK_CLOSED ($0), and the programmer must
issue the CLOSE command ($10) to the socket.

TCP Client Connection

The following sample shows how to open a TCP connection from socket 0 in client mode to a
remote host. The local port is 49152, the destination port is 80 and the destination address is
192.168.2.1.

* Configure socket 0 for TCP
A9 04	 	 LDA #$04	 ; high-byte of s0 MR
A2 00	 	 LDX #$00	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 MR
A9 01	 	 LDA #$01	 ; TCP mode
8D C7 C0	 STA $C0C7	 ; set socket mode
* Set Address Pointer for local port register
A9 04	 	 LDA #$04	 ; high byte of s0 local port
A2 04	 	 LDX #$04	 ; low byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6
A9 C0	 	 LDA #$C0	 ; high byte of local port
8D C7 C0	 STA $C0C7	 ; notice that the W5100 is big endian!
A9 00	 	 LDA #$00	 ; low byte of local port
8D C7 C0	 STA $C0C7	 ; the low byte comes second, not first!
* Set Address Pointer for foreign address register
A9 04	 	 LDA #$04	 ; high byte of s0 foreign address
A2 0C	 	 LDX #$0C	 ; low byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6
A9 C0	 	 LDA #$C0	 ; 1st byte of foreign address
8D C7 C0	 STA $C0C7
A9 11	 	 LDA #$A8
8D C7 C0	 STA $C0C7
A9 0D	 	 LDA #2
8D C7 C0	 STA $C0C7
A9 24	 	 LDA #1
8D C7 C0	 STA $C0C7	 ; last byte of foreign address stored
* With auto-inc, Address Pointer is now at foreign port
A9 00	 	 LDA #$00	 ; high byte of foreign port
8D C7 C0	 STA $C0C7	 ; remember that the W5100 is big endian!
A9 50	 	 LDA #$50	 ; low byte of foreign port
8D C7 C0	 STA $C0C7	 ; the low byte comes second, not first!
* Now open the socket
A9 04	 	 LDA #$04	 ; high-byte of s0 CR
A2 01	 	 LDX #$01	 ; low-byte

Programming the Uthernet II

20

8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 CR
A9 01	 	 LDA #$01	 ; socket open command
8D C7 C0	 STA $C0C7	 ; send command
* Check status register to see if the open command succeeded
A9 04	 	 LDA #$04	 ; high-byte of s0 SR
A2 03	 	 LDX #$03	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 SR
AD C7 C0	 LDA $C0C7
C9 13	 	 CMP #$13	 	 ; is it in SOCK_INIT?
F0 01	 	 BEQ :OPENED	 	 ; yes, continue
00	 	 BRK	 	 ; no, there's some problem
* TCP socket is now waiting for its next command
	 :OPENED
A9 03	 	 LDA #$04	 ; high-byte of s0 CR
A2 01	 	 LDX #$01	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 CR
A9 01	 	 LDA #$04	 ; socket connect command
8D C7 C0	 STA $C0C7	 ; send command
* Now wait for the socket to connect and become established
	 :CHECKEST
A9 04	 	 LDA #$04	 ; high-byte of s0 SR
A2 03	 	 LDX #$03	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6
AD C7 C0	 LDA $C0C7	 ; get socket status
F0 05	 	 BEQ :ERRDONE	 ; 0 = SOCK_CLOSED, error
C9 17	 	 CMP #$17	 ; is it SOCK_ESTABLISHED?
D0 ED	 	 BNE :CHECKTEST	 ; need more time to establish
* At this point, socket is ready for data transmission
60	 	 RTS
	 :ERRDONE
00	 	 BRK

If execution reaches the RTS then the TCP socket has been successfully connected and the
program may now send or receive data on it. If using tcpdump or Wireshark to monitor net-
work traffic, you will see the W5100 send an ARP request followed by the TCP 3-way hand-
shake.
 Because the socket is connected to foreign port 80, typically used for HTTP, the pro-
gram could then send a GET request to the server and wait for an HTTP response in return.

TCP Server

 Opening a TCP socket in server mode is identical except that the foreign address and
port are unnecessary, and the LISTEN command ($02) is used instead of CONNECT. After

Programming the Uthernet II

21

issuing the LISTEN command, the Status Register should show SOCK_LISTEN ($14). The
status will remain so until an incoming connection attempt is received, at which point the
socket’s status will change to ESTABLISHED ($17).
 If the program is not using interrupts, then it could either wait in a loop, repeatedly
checking the Status Register for a transition to ESTABLISHED, or it could do something
else and only check periodically. In most cases, however, a program will wait in a polling loop.
Once it has established a connection, the server can communicate with the client.

Receiving TCP Data

The method for receiving data over an established TCP connection is the same regardless if
the connection on the Apple is a client or a server. Unless the program is using interrupts, the
programmer must periodically poll the Received Size Register. If there is some data to read,
the value returned will be greater than 0, indicating the amount of data available to be read.
Otherwise, the value will be 0 to indicate that there is no new data for the program.
 So far, everything to do with programming the W5100 has been simple and straight-
forward. If you were wondering when things were going to become difficult, wonder no
longer. The procedures for both sending and receiving data on the W5100 are fairly involved,
though if you are an experienced assembly language programmer, you will not find the chal-
lenge too difficult.
 The source of the challenge is rooted in the fact that the W5100 does not automatically
manage buffer rollover, despite the fact that all buffers are circular. Therefore, it is possible,
and probably very common, that a program will begin reading data that is near the end of the
buffer, and then must reset the W5100’s internal address pointer to the beginning of the
buffer, and resume reading. The same is true when sending data to the W5100 to be transmit-
ted. If you recall the explanation of computing the buffer base addresses and masks several
pages ago, this is where they come into play. The W5100 maintains a read and write pointer
(for receive and transmit, respectively) for each socket, but these pointers are only useful after
they have been AND’d with the buffer mask, and the result added to the buffer base address.
 Let’s cover an example scenario before proceeding further. Assume that we are using
socket 1 configured as shown in the table on page 15, that is, the receive buffer size is 2 KB,
the base address for this buffer is $7000, and the buffer mask is $07FF. The program has de-
termined by reading the Received Size Register that there are 628 bytes of data available. The
program has computed the logical AND of buffer read pointer and buffer mask, and the value
is $0738. Next, the program adds the buffer base address, $7000. The result is $7738, so the
program sets the W5100 address pointer to this value and begins reading. After reading 200
bytes of data, the address pointer is now at $77FF, the end of the socket receive buffer (with
auto-increment, it will actually point to $7800 after the last read, which is outside the buffer).
Yet there are still 428 bytes left to read. Because all buffers in the W5100 are circular, the re-
maining 428 bytes are stored starting at the beginning of the buffer, $7000. Therefore, the
program must explicitly set the W5100 internal address pointer to $7000 and resume reading

Programming the Uthernet II

22

the remaining 428 bytes. After all 628 bytes have been read, the program must increase the
buffer read pointer by 628.
 A program can read less than the amount of data available. The procedure in this case
is the same; just ensure that the buffer read pointer is only increased by the amount of data
actually read by the program. In no case should the pointer be increased by more than the
amount of data available to be read (the value of the Received Size Register).
 The final step after reading the data and increasing the read pointer is to issue the
RECV command ($40) to the socket Command Register.
 The following example checks the Received Size Register for socket 0 and clears the
processor Z flag if there is any data to read:

A9 04	 	 LDA #$04	 ; high-byte of s0 RX_RSR
A2 26	 	 LDX #$26	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 RX_RSR
AD C7 C0	 LDA $C0C7	 ; get high byte of received data size
0D C7 C0	 ORA $C0C7	 ; OR with low byte to check for 0

After the ORA instruction, BNE can be used to branch to further instructions to read data
from the W5100. The Z flag is set instead if there is no data to read (Received Size Register
was 0).
 The following is a complete program that connects to a TCP server on port 20,000 and
echoes all received data on the screen using socket 0. It is convenient to use nc -l 20000 (net-
cat, for *nix based systems) to act as the server. An accompanying Applesoft program allows
easy configuration of the local and destination IP addresses. Be sure to save the assembly lan-
guage program to disk as TCPDEMO.

:ASM
 1 * TCP SOCKET DEMO FOR W5100/UTHERNET II
 2 * BY D. FINNIGAN
 3 * OCTOBER 2015
 4 *
 5 * UPDATED 09 JAN 2016
 6 *
 7 * UPDATED 13 FEB 2017, C. TORRENCE
 8 * -REMOVED SEPARATE PATH FOR WRAP, ADD DEBUG PRINT
 9 *
 10 *
 11 * SLOT 3 I/O ADDRESSES FOR THE W5100
 12 *
 13 WMODE EQU $C0B4
 14 WADRH EQU $C0B5
 15 WADRL EQU $C0B6
 16 WDATA EQU $C0B7
 17 *
 18 *

Programming the Uthernet II

23

 19 * W5100 LOCATIONS
 20 *
 21 MACADDR EQU $0009 ; MAC ADDRESS
 22 SRCIP EQU $000F ; SOURCE IP ADDRESS
 23 RMSR EQU $001A ; RECEIVE BUFFER SIZE
 24 *
 25 * SOCKET 0 LOCATIONS
 26 *
 27 S0MR EQU $0400 ; SOCKET 0 MODE REGISTER
 28 S0CR EQU $0401 ; COMMAND REGISTER
 29 S0IR EQU $0402 ; INTERRUPT REGISTER
 30 S0SR EQU $0403 ; STATUS REGISTER
 31 S0LOCALPORT EQU $0404 ; LOCAL PORT
 32 S0FORADDR EQU $040C ; FOREIGN ADDRESS
 33 S0FORPORT EQU $0410 ; FOREIGN PORT
 34 S0MSS EQU $0412 ; MAX SEGMENT SIZE
 35 S0PROTO EQU $0414 ; IP PROTOCOL
 36 S0TOS EQU $0415 ; DS/ECN (FORMER TOS)
 37 S0TTL EQU $0416 ; IP TIME TO LIVE
 38 S0TXFSR EQU $0420 ; TX FREE SIZE REGISTER
 39 S0TXRR EQU $0422 ; TX READ POINTER REGISTER
 40 S0TXWR EQU $0424 ; TX WRITE POINTER REGISTER
 41 S0RXRSR EQU $0426 ; RX RECEIVED SIZE REGISTER
 42 S0RXRD EQU $0428 ; RX READ POINTER REGISTER
 43 *
 44 * SOCKET 0 PARAMETERS
 45 *
 46 RXBASE EQU $6000 ; SOCKET 0 RX BASE ADDR
 47 RXMASK EQU $1FFF ; SOCKET 0 8KB ADDRESS MASK
 48 TXBASE EQU $4000 ; SOCKET 0 TX BASE ADDR
 49 TXMASK EQU RXMASK ; SOCKET 0 TX MASK
 50 *
 51 *
 52 * SOCKET COMMANDS
 53 *
 54 SCOPEN EQU $01 ; OPEN
 55 SCLISTEN EQU $02 ; LISTEN
 56 SCCONNECT EQU $04 ; CONNECT
 57 SCDISCON EQU $08 ; DISCONNECT
 58 SCCLOSE EQU $10 ; CLOSE
 59 SCSEND EQU $20 ; SEND
 60 SCSENDMAC EQU $21 ; SEND MAC
 61 SCSENDKEEP EQU $22 ; SEND KEEP ALIVE
 62 SCRECV EQU $40 ; RECV
 63 *
 64 * SOCKET STATUS
 65 *
 66 STCLOSED EQU $00
 67 STINIT EQU $13

Programming the Uthernet II

24

 68 STLISTEN EQU $14
 69 STESTABLISHED EQU $17
 70 STCLOSEWAIT EQU $1C
 71 STUDP EQU $22
 72 STIPRAW EQU $32
 73 STMAXRAW EQU $42
 74 STPPOE EQU $5F
 75 *
 76 * MONITOR SUBROUTINES
 77 *
 78 KBD EQU $C000
 79 KBDSTRB EQU $C010
 80 COUT EQU $FDED
 81 PRBYTE EQU $FDDA
 82 PRNTAX EQU $F941
 83 *
 84 * ZERO-PAGE STORAGE
 85 *
 86 PTR EQU $06 ; 2 BYTES FOR APPLE BUFFER
 87 GETSIZE EQU $08 ; 2 BYTES FOR RX_RSR
 88 GETOFFSET EQU $0A ; 2 BYTES FOR OFFSET ADDR
 89 GETSTARTADR EQU $0C ; 2 BYTES FOR PHYSICAL ADDR
 90 *
 91 *
 92 * RESET AND CONFIGURE W5100
 93 *
 94 *
8000: A9 06 95 LDA #6 ; 5 RETRIES TO GET CONNECTION
8002: 85 06 96 STA PTR ; NUMBER OF RETRIES
8004: 10 10 97 BPL RESET ; ALWAYS TAKEN
 98 *
8006: 0A 00 01 99 SRCADDR HEX C0A80205 ; 192.168.2.5 W5100 IP
8009: FC
800A: 0A 00 01 100 FADDR HEX C0A80201 ; 192.168.2.1 FOREIGN IP
800D: 11
800E: 4E 20 101 FPORT HEX 4E20 ; 20000 FOREIGN PORT
8010: 00 08 DC 102 MAC HEX 0008DC010203 ; W5100 MAC ADDRESS
8013: 01 02 03
 103 *
 104 RESET
8016: A9 80 105 LDA #$80 ; RESET
8018: 8D B4 C0 106 STA WMODE
801B: A9 03 107 LDA #3 ; CONFIGURE WITH AUTO-INCREMENT
801D: 8D B4 C0 108 STA WMODE
 109 *
 110 * ASSIGN MAC ADDRESS
 111 *
8020: A9 00 112 LDA #>MACADDR
8022: 8D B5 C0 113 STA WADRH

Programming the Uthernet II

25

8025: A9 09 114 LDA #<MACADDR
8027: 8D B6 C0 115 STA WADRL
802A: A2 00 116 LDX #0
802C: BD 10 80 117 :L1 LDA MAC,X
802F: 8D B7 C0 118 STA WDATA ; USING AUTO-INCREMENT
8032: E8 119 INX
8033: E0 06 120 CPX #6 ; COMPLETED?
8035: D0 F5 121 BNE :L1
 122 *
 123 * ASSIGN A SOURCE IP ADDRESS
 124 *
8037: A9 0F 125 LDA #<SRCIP
8039: 8D B6 C0 126 STA WADRL
803C: A2 00 127 LDX #0
803E: BD 06 80 128 :L2 LDA SRCADDR,X
8041: 8D B7 C0 129 STA WDATA
8044: E8 130 INX
8045: E0 04 131 CPX #4
8047: D0 F5 132 BNE :L2
 133 *
 134 * CONFIGURE BUFFER SIZES
 135 *
8049: A9 1A 136 LDA #<RMSR
804B: 8D B6 C0 137 STA WADRL
804E: A9 03 138 LDA #3 ; 8KB TO SOCKET 0
8050: 8D B7 C0 139 STA WDATA ; SET RECEIVE BUFFER
8053: 8D B7 C0 140 STA WDATA ; SET TRANSMIT BUFFER
 141 *
 142 * CONFIGURE SOCKET 0 FOR TCP
 143 *
8056: A9 04 144 LDA #>S0MR
8058: 8D B5 C0 145 STA WADRH
805B: A9 00 146 LDA #<S0MR
805D: 8D B6 C0 147 STA WADRL
8060: A9 01 148 LDA #1 ; TCP MODE
8062: 8D B7 C0 149 STA WDATA
 150 *
 151 * SET LOCAL PORT NUMBER
 152 *
8065: A9 04 153 LDA #<S0LOCALPORT
8067: 8D B6 C0 154 STA WADRL
806A: A9 C0 155 LDA #$C0 ; HIGH BYTE OF LOCAL PORT
806C: 8D B7 C0 156 STA WDATA
806F: A9 00 157 LDA #0 ; LOW BYTE
8071: 8D B7 C0 158 STA WDATA
 159 *
 160 * SET FOREIGN ADDRESS
 161 *
8074: A9 0C 162 LDA #<S0FORADDR

Programming the Uthernet II

26

8076: 8D B6 C0 163 STA WADRL
8079: A2 00 164 LDX #0
807B: BD 0A 80 165 :L3 LDA FADDR,X
807E: 8D B7 C0 166 STA WDATA
8081: E8 167 INX
8082: E0 04 168 CPX #4
8084: D0 F5 169 BNE :L3
 170 *
 171 * SET FOREIGN PORT
 172 *
8086: AD 0E 80 173 LDA FPORT ; HIGH BYTE OF FOREIGN PORT
8089: 8D B7 C0 174 STA WDATA ; ADDR PTR IS AT FOREIGN PORT
808C: AD 0F 80 175 LDA FPORT+1 ; LOW BYTE OF PORT
808F: 8D B7 C0 176 STA WDATA
 177 *
 178 * OPEN SOCKET
 179 *
8092: A9 01 180 LDA #<S0CR
8094: 8D B6 C0 181 STA WADRL
8097: A9 01 182 LDA #SCOPEN ; OPEN COMMAND
8099: 8D B7 C0 183 STA WDATA
 184 *
 185 * CHECK STATUS REGISTER TO SEE IF SUCCEEDED
 186 *
809C: A9 03 187 LDA #<S0SR
809E: 8D B6 C0 188 STA WADRL
80A1: AD B7 C0 189 LDA WDATA
80A4: C9 13 190 CMP #STINIT ; IS IT SOCK_INIT?
80A6: F0 33 191 BEQ OPENED
80A8: A0 00 192 LDY #0
80AA: B9 B6 80 193 :L4 LDA :SOCKERR,Y
80AD: F0 06 194 BEQ :LDONE
80AF: 20 ED FD 195 JSR COUT
80B2: C8 196 INY
80B3: D0 F5 197 BNE :L4
80B5: 00 198 :LDONE BRK
80B6: D5 D4 C8 199 :SOCKERR ASC "UTHERNET II: COULD NOT OPEN SOCKET!"
80B9: C5 D2 CE C5 D4 A0 C9 C9
80C1: BA A0 C3 CF D5 CC C4 A0
80C9: CE CF D4 A0 CF D0 C5 CE
80D1: A0 D3 CF C3 CB C5 D4 A1
80D9: 8D 00 200 HEX 8D00 ; CR+NULL
 201 *
 202 * TCP SOCKET WAITING FOR NEXT COMMAND
 203 *
 204 OPENED
80DB: A9 01 205 LDA #<S0CR
80DD: 8D B6 C0 206 STA WADRL
80E0: A9 04 207 LDA #SCCONNECT

Programming the Uthernet II

27

80E2: 8D B7 C0 208 STA WDATA
 209 *
 210 * WAIT FOR TCP TO CONNECT AND BECOME ESTABLISHED
 211 *
 212 CHECKTEST
80E5: A9 03 213 LDA #<S0SR
80E7: 8D B6 C0 214 STA WADRL
80EA: AD B7 C0 215 LDA WDATA ; GET SOCKET STATUS
80ED: F0 06 216 BEQ FAILED ; 0 = SOCKET CLOSED, ERROR
80EF: C9 17 217 CMP #STESTABLISHED
80F1: F0 4A 218 BEQ CHECKRECV ; SUCCESS
80F3: D0 F0 219 BNE CHECKTEST
 220 *
 221 FAILED
80F5: C6 06 222 DEC PTR
80F7: F0 08 223 BEQ ERRDONE ; TOO MANY FAILURES
80F9: A9 AE 224 LDA #"."
80FB: 20 ED FD 225 JSR COUT
80FE: 4C 16 80 226 JMP RESET ; TRY AGAIN
 227 *
 228 ERRDONE
8101: A0 00 229 LDY #0
8103: B9 0F 81 230 :L LDA ERRMSG,Y
8106: F0 06 231 BEQ :DONE
8108: 20 ED FD 232 JSR COUT
810B: C8 233 INY
810C: D0 F5 234 BNE :L
810E: 00 235 :DONE BRK
 236 *
810F: D3 CF C3 237 ERRMSG ASC "SOCKET COULD NOT CONNECT - CHECK REMOTE HOST"
8112: CB C5 D4 A0 C3 CF D5 CC
811A: C4 A0 CE CF D4 A0 C3 CF
8122: CE CE C5 C3 D4 A0 AD A0
812A: C3 C8 C5 C3 CB A0 D2 C5
8132: CD CF D4 C5 A0 C8 CF D3
813A: D4
813B: 8D 00 238 HEX 8D00
 239 *
 240 *
 241 * CHECK FOR ANY RECEIVED DATA
 242 *
 243 CHECKRECV
813D: 2C 00 C0 244 BIT KBD ; KEYPRESS?
8140: 10 06 245 BPL :NEXT
8142: AD 10 C0 246 LDA KBDSTRB
8145: 4C F8 81 247 JMP CLOSECONN ; CLOSE CONNECTION
 248 :NEXT
8148: A9 26 249 LDA #<S0RXRSR ; S0 RECEIVED SIZE REGISTER
814A: 8D B6 C0 250 STA WADRL

Programming the Uthernet II

28

814D: AD B7 C0 251 LDA WDATA ; HIGH BYTE OF RECEIVED SIZE
8150: 0D B7 C0 252 ORA WDATA ; LOW BYTE
8153: F0 03 253 BEQ NORECV ; NO DATA TO READ
8155: 4C 5D 81 254 JMP RECV ; THERE IS DATA
 255 *
 256 NORECV
8158: EA 257 NOP ; LITTLE DELAY...
8159: EA 258 NOP
815A: 4C 3D 81 259 JMP CHECKRECV ; CHECK AGAIN
 260 *
 261 * THERE IS DATA TO READ - COMPUTE THE PHYSICAL ADDRESS
 262 *
 263 RECV
815D: A9 26 264 LDA #<S0RXRSR ; GET RECEIVED SIZE AGAIN
815F: 8D B6 C0 265 STA WADRL
8162: AD B7 C0 266 LDA WDATA
8165: 85 09 267 STA GETSIZE+1 ; HIGH BYTE
8167: AD B7 C0 268 LDA WDATA
816A: 85 08 269 STA GETSIZE ; LOW BYTE
 270 *
 271 * CALCULATE OFFSET ADDRESS USING READ POINTER AND RX MASK
 272 *
816C: A9 28 273 LDA #<S0RXRD
816E: 8D B6 C0 274 STA WADRL
8171: AD B7 C0 275 LDA WDATA ; HIGH BYTE
8174: 29 1F 276 AND #>RXMASK
8176: 85 0B 277 STA GETOFFSET+1
8178: AD B7 C0 278 LDA WDATA ; LOW BYTE
817B: 29 FF 279 AND #<RXMASK
817D: 85 0A 280 STA GETOFFSET
 281 *
 282 * CALCULATE PHYSICAL ADDRESS WITHIN W5100 RX BUFFER
 283 *
817F: 18 284 CLC
8180: A5 0A 285 LDA GETOFFSET
8182: 69 00 286 ADC #<RXBASE
8184: 85 0C 287 STA GETSTARTADR
8186: A5 0B 288 LDA GETOFFSET+1
8188: 69 60 289 ADC #>RXBASE
818A: 85 0D 290 STA GETSTARTADR+1
 291 *
 292 * SET BUFFER ADDRESS ON APPLE
 293 *
818C: A9 00 294 LDA #0 ; LOW BYTE OF BUFFER
818E: 85 06 295 STA PTR
8190: A9 50 296 LDA #$50 ; HIGH BYTE
8192: 85 07 297 STA PTR+1
 298 *
 299 * SET BUFFER ADDRESS ON W5100

Programming the Uthernet II

29

 300 *
 301 * JSR DEBUG ; UNCOMMENT FOR W5100 DEBUG INFO
8194: A5 0D 302 LDA GETSTARTADR+1 ; HIGH BYTE FIRST
8196: 8D B5 C0 303 STA WADRH
8199: A5 0C 304 LDA GETSTARTADR
819B: 8D B6 C0 305 STA WADRL
 306 *
 307 * BEGIN COPY
 308 *
819E: A0 00 309 LDY #0
81A0: A6 09 310 LDX GETSIZE+1
81A2: F0 10 311 BEQ :LAST ; LESS THAN 256 BYTES
81A4: AD B7 C0 312 :L LDA WDATA
81A7: 91 06 313 STA (PTR),Y
 314 *
81A9: 20 1A 82 315 JSR CLEANOUT ; DEBUG PRINT
 316 *
81AC: C8 317 INY
81AD: D0 F5 318 BNE :L
81AF: E6 07 319 INC PTR+1 ; Y WRAPPED TO 0, GO TO NEXT PAGE
81B1: CA 320 DEX
81B2: D0 F0 321 BNE :L
 322 :LAST
81B4: A6 08 323 LDX GETSIZE
81B6: AD B7 C0 324 :L2 LDA WDATA
81B9: 91 06 325 STA (PTR),Y
 326 *
81BB: 20 1A 82 327 JSR CLEANOUT ; DEBUG PRINT
 328 *
81BE: C8 329 INY
81BF: CA 330 DEX
81C0: D0 F4 331 BNE :L2
 332 *
81C2: A9 8D 333 LDA #$8D ; <CR>
81C4: 20 ED FD 334 JSR COUT ; DEBUG PRINT
 335 *
 336 *
 337 * UPDATE RXRD TO REFLECT DATA WE JUST READ
 338 *
 339 UPDATERXRD
81C7: 18 340 CLC
81C8: A9 04 341 LDA #>S0RXRD ; NEED HIGH BYTE HERE
81CA: 8D B5 C0 342 STA WADRH
81CD: A9 28 343 LDA #<S0RXRD
81CF: 8D B6 C0 344 STA WADRL
81D2: AD B7 C0 345 LDA WDATA ; HIGH BYTE
81D5: A8 346 TAY ; SAVE
81D6: AD B7 C0 347 LDA WDATA ; LOW BYTE
81D9: 65 08 348 ADC GETSIZE ; ADD LOW BYTE OF RECEIVED SIZE

Programming the Uthernet II

30

81DB: AA 349 TAX ; SAVE
81DC: 98 350 TYA ; GET HIGH BYTE BACK
81DD: 65 09 351 ADC GETSIZE+1 ; ADD HIGH BYTE OF RECEIVED SIZE _
81DF: A8 352 TAY ; SAVE
81E0: A9 28 353 LDA #<S0RXRD
81E2: 8D B6 C0 354 STA WADRL
81E5: 8C B7 C0 355 STY WDATA ; SEND HIGH BYTE
81E8: 8E B7 C0 356 STX WDATA ; SEND LOW BYTE
 357 *
 358 * SEND THE RECV COMMAND
 359 *
81EB: A9 01 360 LDA #<S0CR
81ED: 8D B6 C0 361 STA WADRL
81F0: A9 40 362 LDA #SCRECV
81F2: 8D B7 C0 363 STA WDATA
 364 *
 365 *
 366 *
81F5: 4C 3D 81 367 JMP CHECKRECV
 368 *
 369 *
 370 * CLOSE TCP CONNECTION
 371 *
 372 CLOSECONN
81F8: A9 04 373 LDA #>S0CR ; HIGH BYTE NEEDED
81FA: 8D B5 C0 374 STA WADRH
81FD: A9 01 375 LDA #<S0CR
81FF: 8D B6 C0 376 STA WADRL
8202: A9 08 377 LDA #SCDISCON ; DISCONNECT
8204: 8D B7 C0 378 STA WDATA ; SEND COMMAND
 379 *
 380 * CHECK FOR CLOSED STATUS
 381 *
 382 CHECKCLOSED
8207: A2 00 383 LDX #0
8209: A9 03 384 :L LDA #<S0SR
820B: 8D B6 C0 385 STA WADRL
820E: AD B7 C0 386 LDA WDATA
8211: F0 06 387 BEQ ISCLOSED
8213: EA 388 NOP
8214: EA 389 NOP
8215: EA 390 NOP
8216: E8 391 INX
8217: D0 F0 392 BNE :L ; DON'T WAIT FOREVER
 393 ISCLOSED
8219: 60 394 RTS ; SOCKET IS CLOSED
 395 *
 396 *
 397 * SUPPORT SUBROUTINE: CLEANOUT

Programming the Uthernet II

31

 398 * "CLEANS UP" OUTPUT FOR THE APPLE BY
 399 * SETTING THE HIGH BIT AND DOING SOME SUBSTITUTIONS
 400 CLEANOUT
821A: 09 80 401 ORA #%10000000 ; SET HIGH BIT
821C: C9 8A 402 CMP #$8A ; NEWLINE?
821E: D0 02 403 BNE :OUT
8220: A9 8D 404 LDA #$8D ; CONVERT TO <CR>
 405 :OUT
8222: 4C ED FD 406 JMP COUT ; THIS WILL DO THE RTS
 407 *
 408 * DEBUG - PRINT W5100 STARTADR AND SIZE
 409 *
 410 DEBUG
8225: A9 A0 411 LDA #" "
8227: 20 ED FD 412 JSR COUT
822A: A9 A4 413 LDA #"$"
822C: 20 ED FD 414 JSR COUT
822F: A5 0D 415 LDA GETSTARTADR+1
8231: A6 0C 416 LDX GETSTARTADR
8233: 20 41 F9 417 JSR PRNTAX
8236: A9 A0 418 LDA #" "
8238: 20 ED FD 419 JSR COUT
823B: A9 A4 420 LDA #"$"
823D: 20 ED FD 421 JSR COUT
8240: A5 09 422 LDA GETSIZE+1
8242: A6 08 423 LDX GETSIZE
8244: 20 41 F9 424 JSR PRNTAX
8247: A9 8D 425 LDA #$8D
8249: 4C ED FD 426 JMP COUT ; THIS WILL DO THE RTS
 427 *

--End assembly, 588 bytes, Errors: 0

Following is an Applesoft program that patches SRCADDR and FADDR:

10 D$ = CHR$ (4): REM CTRL+D
20 PRINT D$;"BLOAD TCPDEMO"
30 BASE = 32768:B1 = BASE + 6
35 DIM IP(5)
40 PRINT "UTHERNET II TCPDEMO CONFIGURATION"
50 PRINT "ENTER LOCAL (APPLE II) IP ADDRESS: ";
60 GOSUB 1000
70 B1 = B1 + 4
80 PRINT "ENTER DESTINATION IP ADDRESS: ";
90 GOSUB 1000
100 PRINT "SUCCESSFULLY CONFIGURED TCPDEMO. RUNNING..."
110 CALL BASE

Programming the Uthernet II

32

120 END
900 REM PARSE THE IP ADDRESS AND POKE INTO PROGRAM
1000 INPUT "";A$
1010 IP(0) = 0:IP(4) = LEN (A$) + 1
1020 C = 1
1030 FOR I = 2 TO LEN (A$): IF MID$ (A$,I,1) = "." THEN IP(C) = I:C = C + 1
1040 NEXT
1050 IF C < > 4 THEN PRINT "*** ILLEGAL IP ADDRESS ***": GOTO 50
1060 FOR I = 1 TO 4
1070 NUM = VAL (MID$ (A$,IP(I - 1) + 1,IP(I) - IP(I - 1) - 1))
1080 POKE B1 + I - 1,NUM
1090 NEXT
1100 RETURN

Sending TCP Data

Sending data follows the same pattern as receiving data, except that the values and registers
for the TX (transmit) buffer are used instead. The programmer still needs to check for buffer
overflow, and copy the data in two parts if the size of the data to send exceeds the end point of
the buffer.
 Begin by accessing the TX Free Size Register to determine how much space is left in
the buffer. If the free size is less than your send size, then the W5100 may be in process of
sending a TCP segment. Simply poll again until there is enough free space.
 Next, compute the offset address by performing the logical AND of the TX Write
Pointer and the TX mask, then add the resulting value to the TX Base Address.
After the W5100 offset address is computed, check if the size of the data to send will exceed
the end of the buffer. If so, the copy from the Apple to the W5100 must be split in two. If not,
a single copy loop will suffice. No matter which path was taken, the final steps are to increase
the TX Write Pointer by the size of the data sent, then issue to the SEND command ($20) to
the Command Register.
 The W5100 will always assert the Push (PSH) flag for data segments. The Urgent
(URG) flag and pointer cannot be set. There is no way to alter this behavior.

Checking for TCP FIN and Closing the Socket

The socket Status Register will be updated to show if the remote host has closed its end of the
connection. If so, the status will be SOCK_CLOSE_WAIT ($1C). In response to this status,
the programmer should close the socket using either the DISCON ($08) or CLOSE ($10)
commands. The DISCON command will send a FIN segment to the remote host, whereas
CLOSE immediately shuts down the connection without communicating anything to the
other host. In most cases, the programmer should use DISCON, as shown in this example:

Programming the Uthernet II

33

* Close TCP connection
A9 04	 	 LDA #$04	 ; high-byte of s0 CR
A2 01	 	 LDX #$01	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 CR
A9 08	 	 LDA #$08	 ; socket discon command
8D C7 C0	 STA $C0C7	 ; send command
* Check status register to see if the discon command succeeded
	 CHECKCLOSED
A9 04	 	 LDA #$04	 ; high-byte of s0 SR
A2 03	 	 LDX #$03	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s0 SR
AD C7 C0	 LDA $C0C7
D0 F1	 	 BNE CHECKCLOSED ; not closed yet
60	 	 RTS	 	 ; socket is closed

Be aware that the socket can also close from timeout. The programmer must check the Status
Register before sending or receiving data to ensure that the connection is still established.

Using UDP Sockets

Using a UDP socket is much simpler than TCP. In general, the procedures are the same as for
TCP, except that there is no connection process. The W5100 does not necessarily have to be
configured with an IP address, such as if DHCP is being used to obtain host configuration.

Opening a UDP Socket

The first step is to configure the socket Mode Register for UDP. Then configure the local port
socket parameter before issuing the OPEN command ($01) to the Command Register. To see
if the command succeeded, check the Status Register for SOCK_UDP ($22). Close the socket
and start again if SOCK_UDP is not returned in the Status Register. The following program
demonstrates how to open socket 1 in UDP mode using local port 49152:

* Configure socket 1 for UDP
A9 05	 	 LDA #$05	 ; high-byte of s1 MR
A2 00	 	 LDX #$00	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s1 MR
A9 02	 	 LDA #$02	 ; UDP mode
8D C7 C0	 STA $C0C7	 ; set socket mode
* Set Address Pointer for local port register
A9 05	 	 LDA #$05	 ; high byte of s1 local port
A2 04	 	 LDX #$04	 ; low byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6
A9 C0	 	 LDA #$C0	 ; high byte of local port

Programming the Uthernet II

34

8D C7 C0	 STA $C0C7	 ; notice that the W5100 is big endian!
A9 00	 	 LDA #$00	 ; low byte of local port
8D C7 C0	 STA $C0C7	 ; the low byte comes second, not first!
* Now open the socket
A9 05	 	 LDA #$05	 ; high-byte of s1 CR
A2 01	 	 LDX #$01	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s1 CR
A9 01	 	 LDA #$01	 ; socket open command
8D C7 C0	 STA $C0C7	 ; send command
* Check status register to see if the open command succeeded
A9 05	 	 LDA #$05	 ; high-byte of s1 SR
A2 03	 	 LDX #$03	 ; low-byte
8D C5 C0	 STA $C0C5
8E C6 C0	 STX $C0C6	 ; data register now points at s1 SR
AD C7 C0	 LDA $C0C7
C9 22	 	 CMP #$22	 ; is it in SOCK_UDP?
F0 01	 	 BEQ :OPENED	 ; yes, continue
00	 	 BRK	 	 ; no, there's some problem
* UDP socket is now waiting for its next command
	 :OPENED
60	 	 RTS

As soon as the UDP socket is opened it is ready to send and receive data.

Receiving UDP Data

The procedure is identical to that for TCP: first check the Received Size Register for a value
greater than 0. If there is data to read, proceed by copying the UDP data from the W5100 RX
buffer to the Apple. An 8-byte socket header proceeds the actual UDP data payload. This
header contains, in order: the foreign IP address (4 bytes), foreign port (2 bytes), and data
size (2 bytes). All values are in network byte order, which is high byte first. The data size does
include the size of the 8-byte socket header. Note that this 8 byte header is not the same as the
UDP header, which is also 8 bytes. For example, if the UDP data payload is 3 bytes, the
W5100 will report a total receive size of 11 bytes: 8 bytes socket header and 3 bytes UDP
payload.
 The foreign IP address and port in the socket header should be saved if the program
will send a response back. Unlike in a TCP socket where the program may choose to read less
than the total amount of data available, with UDP, the program must read all available UDP
data. After reading the received data into the Apple’s memory, the program must advance the
RXRD pointer and send the RECV command ($40), same as with TCP sockets.

Programming the Uthernet II

35

Sending UDP Data

The send process is similar to using a TCP socket, except that the foreign IP address and port
must be specified. See table 4.6 for the addresses of these two socket parameters.

Closing a UDP Socket

The socket can be closed at any time by sending the CLOSE command ($10) to the socket
Command Register.

Using IP Raw Sockets

The IP Raw socket mode allows the programmer to implement any protocol within IP, such as
AppleTalk over IP, ICMP, RDP, or any other protocol.

Opening an IP Raw Socket

The first step is to configure the socket Mode Register for IP Raw ($03). Then configure the
Protocol socket parameter before issuing the OPEN command ($01) to the Command Regis-
ter. To see if the command succeeded, check the Status Register for SOCK_IPRAW ($32). As
soon as the socket is opened it is ready to send and receive data.

Receiving IP Raw Data

Receiving data is much the same as with a UDP socket: first check the Received Size Register
for a value greater than 0. If there is data to read, proceed by copying the IP Raw data from
the W5100 RX buffer to the Apple. A 6-byte socket header proceeds the actual IP data pay-
load. This header contains, in order: destination address (4 bytes), and data size (2 bytes). All
values are in network byte order, which is high byte first. The data size does include the size
of the 6-byte socket header.

Sending IP Raw Data

The send process is similar to using a UDP socket, except that the remote port does not need
to be specified, only the destination address.

Closing an IP Raw Socket

The socket can be closed at any time by sending the CLOSE command ($10) to the socket
Command Register.

Programming the Uthernet II

36

Using a MAC Raw Socket

The MAC Raw socket provides the programmer with the lowest-possible access to the
W5100, allowing one implement any protocol and send any data across the wire. This socket
mode is only available on socket 0. At minimum, a MAC address should be configured, but
otherwise, there is no need to configure any of the IP settings because it is up to the program
to manage the protocol that will be used.

Opening a MAC Socket

The first step is to configure the socket Mode Register for MAC Raw ($04). Then configure
the Protocol socket parameter before issuing the OPEN command ($01) to the Command
Register. To see if the command succeeded, check the Status Register for SOCK_MACRAW
($42). As soon as the socket is opened it is ready to send and receive data.

Receiving MAC Raw Data

Receiving data is much the same as with a UDP socket: first check the Received Size Register
for a value greater than 0. If there is data to read, proceed by copying the MAC Raw data
from the W5100 RX buffer to the Apple. The data is prepended with a 2 byte data length
header. This length includes all received data plus the length of this header. For example, if
the received data were a 14 byte Ethernet header plus 20 bytes of protocol data, the length
reported would be 36 bytes.

Sending IP Raw Data

The send process is similar to using a UDP socket, except that the remote address and port do
not need to be specified.

Closing a MAC Raw Socket

The socket can be closed at any time by sending the CLOSE command ($10) to the socket
Command Register.

Programming the Uthernet II

37

Probing for the Uthernet II

Because the Uthernet II works in any slot in the Apple, programs should also be written to
work with it in any slot. While it is always possible to ask the user which slot contains the
Uthernet II, a clever program can instead scan the slots in attempt to probe each one for the
presence of an Uthernet II. There are a few difficulties to this approach, however. The princi-
pal obstacle to probing the slots for an Uthernet II is that the card has no firmware, and thus
no ID bytes to check for. Furthermore, the W5100 chip used on the Uthernet II has no ID
bytes either. Therefore, it must be detected by testing for its expected behavior.
 The probing algorithm is thus: for each slot, $80, the reset byte, will be stored at
$C0x4, the Mode Register. If the slot contains an Uthernet II, this will cause the W5100 to
reset, and the Mode Register to read $00. Next, the Mode Register will be set to $03, and
again read back to verify that it contains $03. With this last check satisfied, the probe is com-
plete.
 The danger in this algorithm is that it involves blindly writing and reading two slot I/O
locations which could cause unpredictable behavior on other peripheral cards. In an attempt
to minimize this danger, the slots are scanned in a specific order, based on the presumed prob-
ability of having an Uthernet II installed therein. This order is: 3, 4, 2, 1, 5, 6, 7.
 This algorithm has been tested to work on a platinum (enhanced) Apple IIe, a stan-
dard (unenhanced) Apple IIe, and an Integer Basic Apple II. Each Apple was tested both
with and without a Transwarp accelerator, and with three to four other peripheral cards in-
stalled.
 Following is the Uthernet II probe program:

 1 *
 2 * UTHERNET II PROBE
 3 *
 4 * SCAN THE SLOTS FOR AN UTHERNET II
 5 *
 6 * WRITTEN BY D. FINNIGAN - 06 JAN 2016
 7 *
 8 *
 9 MR EQU $C084
 10 DATA EQU $C087
 11 *
 12 COUT EQU $FDED
 13 PRBYTE EQU $FDDA
 14 *
 15 *
 16 *
 17 START
8000: A0 07 18 LDY #SLOTLEN-SLOTS ; NUMBER OF SLOTS TO SCAN
8002: B9 4F 80 19 :L LDA SLOTS,Y ; GET SLOT NUMBER
8005: AA 20 TAX
 21 *

Programming the Uthernet II

38

 22 * SEND THE RESET COMMAND
 23 *
8006: A9 80 24 LDA #$80
8008: 9D 84 C0 25 STA MR,X
800B: EA 26 NOP
800C: EA 27 NOP
800D: BD 84 C0 28 LDA MR,X ; SHOULD GET ZERO
8010: D0 2C 29 BNE :NEXTSLOT
 30 *
 31 * CONFIGURE OPERATING MODE WITH AUTO-INCREMENT
 32 *
8012: A9 03 33 LDA #3 ; OPERATING MODE
8014: 9D 84 C0 34 STA MR,X
8017: BD 84 C0 35 LDA MR,X ; READ BACK MR
801A: C9 03 36 CMP #3
801C: D0 20 37 BNE :NEXTSLOT
 38 *
 39 * PROBE SUCCESSFUL
 40 *
801E: 8A 41 TXA
801F: 48 42 PHA
8020: A0 00 43 LDY #0
8022: B9 56 80 44 :FL LDA FOUNDMSG,Y
8025: F0 06 45 BEQ :FOUND2
8027: 20 ED FD 46 JSR COUT
802A: C8 47 INY
802B: D0 F5 48 BNE :FL
 49 :FOUND2
802D: 68 50 PLA
802E: 6A 51 ROR
802F: 6A 52 ROR
8030: 6A 53 ROR
8031: 6A 54 ROR
8032: 09 B0 55 ORA #$B0
8034: 20 ED FD 56 JSR COUT
8037: A9 8D 57 LDA #$8D
8039: 20 ED FD 58 JSR COUT
803C: D0 10 59 BNE :DONE ; ALWAYS TAKEN
 60 *
 61 * TRY NEXT SLOT
 62 *
 63 :NEXTSLOT
803E: 88 64 DEY
803F: 10 C1 65 BPL :L
 66 *
 67 * UTHERNET II NOT FOUND
 68 *
8041: A0 00 69 LDY #0
8043: B9 72 80 70 :NFL LDA NOTFOUNDMSG,Y

Programming the Uthernet II

39

8046: F0 06 71 BEQ :DONE
8048: 20 ED FD 72 JSR COUT
804B: C8 73 INY
804C: D0 F5 74 BNE :NFL
 75 :DONE
804E: 00 76 BRK
 77 *
 78 *
 79 * ORDER OF SLOTS TO BE SCANNED
 80 * THE GOAL HERE IS TO ARRANGE THE SLOT NUMBERS IN ORDER
 81 * OF PROBABILITY OF FINDING AN UTHERNET II.
 82 * THESE ARE IN REVERSE ORDER, $N0 FORMAT.
 83 *
 84 * YOU CAN REMOVE A SLOT FROM THIS TABLE IF YOU DON'T
 85 * WANT TO SCAN IT, FOR EXAMPLE, SLOTS 5 OR 6.
 86 *
804F: 70 60 50 87 SLOTS HEX 70605010204030
8052: 10 20 40 30
 88 SLOTLEN
 89 *
 90 *
 91 *
8056: D5 D4 C8 92 FOUNDMSG ASC "UTHERNET II FOUND IN SLOT: "
8059: C5 D2 CE C5
805D: D4 A0 C9 C9
8061: A0 C6 CF D5
8065: CE C4 A0 C9
8069: CE A0 D3 CC
806D: CF D4 BA A0
8071: 00 93 HEX 00
8072: D5 D4 C8 94 NOTFOUNDMSG ASC "UTHERNET II NOT FOUND!"
8075: C5 D2 CE C5
8079: D4 A0 C9 C9
807D: A0 CE CF D4
8081: A0 C6 CF D5
8085: CE C4 A1
8088: 8D 00 95 HEX 8D00

--End assembly, 138 bytes, Errors: 0

An Improved Uthernet II Probe Subroutine

Benoît Gilon wrote an improved subroutine to detect the Uthernet II. He writes “The changes
from the one published is that it automatically skips all Disk II interface cards (detected by a
checksum routine on the $Cnxx ROM space). and also skips any card with a firmware entry

Programming the Uthernet II

40

point as the Uthernet II card doesn’t have any at this time. The checked bytes are at offsets:
$05 (value $38) $07 (value $18) and $0B (value $01).” Following is his subroutine:

* Routine pour deviner ou se cache la carte Uthernet II
AUXPTR EQU $06
SLOT EQU $FE
SLOT16 EQU $FF
YMODR EQU $85	 	 ; Offset to Wizchip mode register
COUT1 EQU $FDF0
 ORG $0300
 JSR CHKSLTS
 BCS :0
 LDA #MESSOK
 LDY #>MESSOK
 JSR PRINT
 LDA SLOT
 ORA #$B0
 JSR COUT1
 LDA #$8D
 JMP COUT1
:0 LDA #MESSNOK
 LDY #>MESSNOK
PRINT STA AUXPTR
 STY AUXPTR+1
 LDY #0
]LOOP LDA (AUXPTR),Y
 BEQ :0
 JSR COUT1
 INY
 BNE]LOOP ; Always
:0 RTS
MESSOK HEX 8D
 ASC "FOUND A UII CARD IN SLOT #",00
MESSNOK HEX 8D
 ASC "NO UII CARD DETECTED",8D,00
CHKSLTS LDA #0
 STA AUXPTR
 LDA #$C7
 STA AUXPTR+1
 AND #7
 STA SLOT
]LOOP1 LDX #MVAL-MOFFST-1
]LOOP LDY MOFFST,X
 LDA (AUXPTR),Y
 CMP MVAL,X
 BNE :1
 DEX
 BPL]LOOP
]NEXT DEC AUXPTR+1

Programming the Uthernet II

41

 DEC SLOT
 BPL]LOOP1
 SEC
 RTS
* No firmware card found in this slot: good!
* Is it a drive II controller card?
:1 LDA #0
 TAX
 TAY
]LOOP ADC (AUXPTR),Y
 BCC *+3
 INX
 INY
 BNE]LOOP
 CMP #$C2	 ;$7BC2 is the checksum for DII interface cards
 BNE *+6
 CPX #$7B
 BEQ]NEXT
 LDA AUXPTR+1
 LUP 4
 ASL
 --^
 STA SLOT16
 ORA #YMODR
 TAY
 LDA #$80
 STA $BFFF,Y
 LDA #3
 STA $BFFF,Y
 CMP $BFFF,Y
 BNE]NEXT
 CLC
 RTS
MOFFST HEX 05070B
MVAL HEX 381801

Programming the Uthernet II

42

Indexed Addressing and Slot Independent Code

Due to the 6502’s phantom read that occurs in indexed addressing modes, the usual indexed
addressing method cannot be used to access the W5100. Instead, the base address must be
$BFFF so that the false read occurs on a different page and does not affect the W5100. This is
the same method that is used for the Super Serial Card firmware. The reason why this alter-
nate method is necessary is that the W5100 Auto-Increment mode will advance the address
pointer on any read or write to the Data Port, and the false read will trigger this increment
before the 6502 actually reads or writes any data.
 First obtain the slot number in the form of $n0, for example, $30 for slot 3, or $40 for
slot 4. Then add $85 to reach the Mode Register, $86 for Address High, and so on. This ex-
ample shows how to reset and configure the W5100 with a MAC address:

	 LDA #SLOT	 ; Uthernet slot in $n0 format
	 ORA #$85	 ; Point to Mode Register
	 TAX
	 LDA #$80	 ; reset byte
	 STA $BFFF,X	 ; reset the W5100
	 LDA #3		 ; standard config
	 STA $BFFF,X
* Assign MAC address
	 INX	 	 ; point to Address High
	 LDA #0		 ; hi byte of MAC addr
	 STA $BFFF,X
	 INX	 	 ; point to Address Low
	 LDA #9		 ; lo byte
	 STA $BFFF,X
	 LDY #0
	 INX	 	 ; point to Data Port
:MACL	 LDA MACADDR,Y
	 STA $BFFF,X
	 INY
	 CPY #6
	 BNE :MACL
	 BRK
*
MACADDR HEX 0008DC010203

Programming the Uthernet II

43

Uthernet II Interrupts

The W5100 is capable of generating IRQs, or interrupts. Interrupts can be triggered on the
following events: socket connection, socket disconnection, incoming data, or timeout. The
programmer can clear the interrupt status by writing to the Interrupt Register (IRQR) or to
the socket's individual Interrupt Register. All interrupts are maskable.

How to Enable Interrupts

To enable interrupts, you need to set the Interrupt Mask Register, which we will hereafter re-
fer to as IRQMR. The IRQMR is a single byte located at $0016 within the W5100's address
space. Only 7 bits are actually used; bit 4 is reserved and should remain clear. All bits are
clear upon power-up, thus masking out all interrupts. To enable a particular interrupt, set its
bit to 1. Here is a table of each bit and what it masks:

Bit IRQ Masked

7 IP Conflict
another machine has this same IP address

6 Destination unreachable

5 PPPoE Close Enable

4 Reserved
should always be 0

3 Socket 3 Interrupt Enable

2 Socket 2 Interrupt Enable

1 Socket 1 Interrupt Enable

0 Socket 0 Interrupt Enable

If you are going to be using interrupts at all, you may as well enable all of them, because the
Interrupt Register makes it easy to check for and clear any type of interrupt that may occur.
To enable all interrupts, simply store the byte $EF at the IRQMR location, which is $0016.
Also, ensure that your program clears the Interrupt disable flag in the 6502 process status reg-
ister.

How to Check for Interrupts

When an interrupt comes through on the W5100, the appropriate bit will be changed in the
Interrupt Register (IRQR) to show the cause. The interrupt flag will be shown with a cleared

Programming the Uthernet II

44

bit, and it will remain that way until all bits that have been masked from the IRQMR have
been set to 1 by the programmer. The IRQR status byte has the same bit layout as IRQMR,
as shown in the table above.
 Whenever an interrupt occurs, the corresponding bit in IRQR will be set to 1. It is the
responsibility of the programmer to handle the interrupt, then reset the bit to 0. Otherwise, no
more interrupts of that type will be flagged. Curiously, the method to clear the bit is to write a
1 to it. A minor exception exists for the four Socket interrupt flags. These flags will be auto-
matically cleared when their corresponding Socket Interrupt Register is cleared to $00.
 The Destination unreachable flag has some extra functionality to aid the programmer.
When this type of interrupt occurs, the unreachable port address (UIPR) and the unreachable
port register (UPORT) will contain the destination port and address.

The Socket Interrupt Register

Each of the four sockets has a byte devoted to its own Interrupt Register. This socket inter-
rupt register is located at $0402 for socket 0, $0502 for socket 1, and so on. Only 5 bits are
significant. They will be set to 1 when the condition has occurred. They are:

Bit Status

7 Reserved

6 Reserved

5 Reserved

4 Send OK

3 Timeout
Connection establishment/termination or data transmission

2 Receive
New data is received, or more is remaining after
CMD_RECV

1 Disconnect
Connection termination is requested or completed

0 Connection
Connection is established

Clear the status by writing a 0 to it. If the programmer writes a $00 byte to this register, then
the corresponding socket bit in the IRQR will also be cleared.

Programming the Uthernet II

45

Troubleshooting

Problem Possible Solutions

The test procedure on page 5 did
not return a 03 on the screen.

•Ensure that the Uthernet II is properly seated in its
slot.
•Ensure that you are using the correct address, ex:
C094 for slot 1, or C0C4 for slot 4.
•If you are using a IIGS and the Uthernet II is in-
stalled in a slot other than slot 3 or 4, ensure that the
slot setting in the Control Panel is set to Your Card.
•Uthernet II is not fully compatible with the original
Apple II and Apple II Plus; see problem and solu-
tions below.

The test procedure on page 5
worked, but the green link LED is
not lit.

•Ensure that an Ethernet cable is connected from the
Uthernet II to another computer, switch, hub, router,
or other network device.
•Ensure that the other network device is powered on.
•The Uthernet II is a 10/100Mb/s device. Ensure that
the other device is able to auto-negotiate one of these
two link speeds. If the white LED on the Uthernet II
is lit, the link speed is 100 Mb/s.

A program which worked with the
original Uthernet no longer works
with the new Uthernet II.

•If your program is listed in the Supported Software
section of this manual, check its web site for an up-
dated version.
•If you are using an Apple IIGS with Marinetti you
need to download an updated link layer driver for the
Uthernet II.

The Uthernet II is not working re-
liably in an integer Apple II, Apple
II Plus, or standard Apple IIe.

•Other peripheral cards may affect the Uthernet II’s
operation in an older Apple II model.
•Try removing other peripheral cards, one at a time,
until the Uthernet II operates reliably.
•If you are using a Transwarp accelerator, try setting
the Uthernet II slot to slow speed using the DIP
switch.
•If nothing else worked, use Uthernet II in an en-
hanced Apple IIe or Apple IIGS.

For further assistance, email support@a2retrosystems.com

46

mailto:support@a2retrosystems.com
mailto:support@a2retrosystems.com

Schematic

47

Schematic

48

Credits

2018 Update

In addition the original credits I would like to thank André LaMothe for helping me figure out
why the card was failing in older Apple II+(RFI) and unenhanced IIe’s after what appeared to
be some simple changes and layout cleanup.
 Thank you to the beta testers who provided feedback: William Andrew, Bob Brown,
Patrick Kloepfer, Andrew Madsen, Neil Pobuda, Jeff Ramsey, Lars Wesenick, Matt Wilbur.
 I would also like to recognize all the developers that keep the code updated and release
new functionality that works with our hardware.
 Last but not least, I would like to thank David Finnigan for keeping the manual up-
dated and for designing the new getting started flyer included with all future orders.

Original Credits

I dedicate the Uthernet II to my mom (my assistant tester/shipper). Thanks for all your help!
 We all owe Oliver Schmidt a large thank you for his many and continuing open source
contributions to Contiki, IP65, and ADTPro. Oliver consulted with me in the early stages of
this product’s development, on which chip should be chosen for this project, and provided all
the primary software support to ensure the correct operation of the hardware. After that he
went on to provide drivers and enhancements to Contiki, IP65 and ADTPro.
 Ewen Wannop is another force to be reckoned with in the Apple II software world
with his own suite of programs for GS/OS, that use both the Uthernet I and II cards. Ewen
developed both the original Uthernet I and II link layers that make it possible to use Marinetti
and associated applications on GS/OS.
 David Schmidt continues to enhance and support ADTPro. David was responsible for
an early test version of ADTPro that was compatible with the Uthernet II.
 On the hardware front Kilian Leonhardt suggested a solution to resolve compatibility
issues with the Apple II Plus and Unenhanced IIe, and Daniel Kruszyna suggested a solution
for an issue with the interrupt line.
 I would like to thank Tim Haynes for his support and encouragement over the years.
He was there when I started working on my first original Ethernet card and has been ex-
tremely helpful over the years by loaning me various Apple II systems in order to properly
test my creations.
 Last but not least is my sincere thanks to my alpha and beta hardware testers whose
additional testing help give the confidence to proceed with production of this project:
Jonno Downes, Ed Eastman, Sean Fahey, David Finnigan, Bill Garber, Daniel Kruszyna,
Kilian Leonhardt, John Keoni Morris, Andrew Roughan, Oliver Schmidt, David Schmidt,
Nigel Sheldon (CL), Antoine Vignau, Ryan Wallmow, Ewen Wannop, Sean Zabriskie.

49

